On Computing the Hamiltonian Index of Graphs ⋆

نویسندگان

چکیده

The $r$-th iterated line graph $L^{r}(G)$ of a $G$ is defined by: (i) $L^{0}(G) = G$ and (ii) $L^{r}(G) L(L^{(r- 1)}(G))$ for $r > 0$, where $L(G)$ denotes the $G$. Hamiltonian Index $h(G)$ smallest $r$ such that has cycle. Checking if $h(G) k$ NP-hard any fixed integer $k \geq 0$ even subcubic graphs We study parameterized complexity this problem with parameter treewidth, $tw(G)$, show we can find in time $O*((1 + 2^{(\omega 3)})^{tw(G)})$ $\omega$ matrix multiplication exponent $O*$ notation hides polynomial factors input size. The Eulerian Steiner Subgraph takes as specified subset $K$ terminal vertices asks an (that is: connected, all degree.) subgraph $H$ containing terminals. A second result (and key ingredient our algorithm finding $h(G)$) work which solves time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Szeged index of graphs on ‎triples

ABSTRACT Let ‎G=(V,E) ‎be a‎ ‎simple ‎connected ‎graph ‎with ‎vertex ‎set ‎V‎‎‎ ‎and ‎edge ‎set ‎‎‎E. ‎The Szeged index ‎of ‎‎G is defined by ‎ where ‎ respectively ‎ ‎ is the number of vertices of ‎G ‎closer to ‎u‎ (‎‎respectively v)‎ ‎‎than ‎‎‎v (‎‎respectively u‎).‎ ‎‎If ‎‎‎‎S ‎is a‎ ‎set ‎of ‎size‎ ‎ ‎ ‎let ‎‎V ‎be ‎the ‎set ‎of ‎all ‎subsets ‎of ‎‎S ‎of ‎size ‎3. ‎Then ‎we ‎define ‎t...

متن کامل

computing szeged index of graphs on ‎triples

abstract let ‎g=(v,e) ‎be a‎ ‎simple ‎connected ‎graph ‎with ‎vertex ‎set ‎v‎‎‎ ‎and ‎edge ‎set ‎‎‎e. ‎the szeged index ‎of ‎‎g is defined by ‎ where ‎ respectively ‎ ‎ is the number of vertices of ‎g ‎closer to ‎u‎ (‎‎respectively v)‎ ‎‎than ‎‎‎v (‎‎respectively u‎).‎ ‎‎if ‎‎‎‎s ‎is a‎ ‎set ‎of ‎size‎ ‎ ‎ ‎let ‎‎v ‎be ‎the ‎set ‎of ‎all ‎subsets ‎of ‎‎s ‎of ‎size ‎3. ‎then ‎we ‎define ‎three ‎...

متن کامل

The Hamiltonian index of graphs

The Hamiltonian index ofa graph G is defined as h(G) = minim: LIIl(G) is Hamiltonian). In this paper, using the reduction method of Catlin [P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29-44], we constructed a graph i/(m)(G) from G and prove that ifh(G)?:. 2, then h(G) = minim : i/(m)(G) has a spanning Eulerian subgraphl.

متن کامل

On the harmonic index of bicyclic graphs

The harmonic index of a graph $G$, denoted by $H(G)$, is defined asthe sum of weights $2/[d(u)+d(v)]$ over all edges $uv$ of $G$, where$d(u)$ denotes the degree of a vertex $u$. Hu and Zhou [Y. Hu and X. Zhou, WSEAS Trans. Math. {bf 12} (2013) 716--726] proved that for any bicyclic graph $G$ of order $ngeq 4$, $H(G)le frac{n}{2}-frac{1}{15}$ and characterize all extremal bicyclic graphs.In this...

متن کامل

On computing the general Narumi-Katayama index of some graphs

The Narumi-Katayama index was the first topological index defined by the product of some graph theoretical quantities. Let G be a simple graph with vertex set V = {v1, . . . , vn} and d(v) be the degree of vertex v in the graph G. The Narumi-Katayama index is defined as NK(G) = ∏ v∈V d(v). In this paper, the Narumi-Katayama index is generalized using a n-vector x and it is denoted by GNK(G, x) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2022

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.4084957